## **ASI**

## Low Power Pressure and Temperature Smart Sensor with Embedded ADC and uP

### Preliminary Technical Data

**ASI2301** 

#### **FEATURES**

Absolute/relative pressure measurements

10-bit digitized pressure sensor outputs

10-bit digital temperature sensor output

**Low Power Consumption** 

Embedded uP

Digitally controlled sensitivity and bias calibration

Digitally controlled sample rate

Auxiliary digital I/O

Power management control for low power standby mode

SPI® or RS232 compatible serial interfaces

**Auxiliary 10 bit ADC input** 

Single-supply operation - 2.8V to 3.6V

#### **APPLICATIONS**

A single-chip-solution for:

Tire pressure sensor (with wireless control)

Sports watch with altimeter sensor

Automobile pressure sensing

Health monitoring systems, blood pressure monitors

Digital Weight Scale

Digital all-weather clock with altimeter sensor



**Functional Block Diagram** 

#### GENERAL DESCRIPTION

The ASI2301 is a low-power single-chip smart sensor for pressure and temperature measurements. It is available in a single compact package by advance mixed-signal designs and MEMS sensor integration. The sensor's analog outputs are digitized and converted into a convenient format that can be accessed using a simple SPI or RS232 interface. The digital interface provides access to measurements of the pressure, temperature, power supply and two auxiliary analog inputs. The embedded uP offers developers with a system-ready device suitable for many unique and versatile applications, together with reducing development time, cost and program risk

The ASI2301 also offers a comprehensive set of features which can be used to further reduce the hardware complexity of system designs. These integrated features include a configurable 10-bit ADC, configurable digital I/O port, and a programmable uP. The ASI2301 offers two different power management features that can be enabled via the digital port: a programmable duty cycle sleep mode for systems that do not require continuous operation and a low power mode for systems that can trade reduced sample rates for more efficient power operation.

.

## **MOTION / ACCELERATION SENSOR SPECIFICATIONS**

Table 1

| Parameter                      | Conditions          | Min Typ              | Max     | Unit        |
|--------------------------------|---------------------|----------------------|---------|-------------|
| PRESSURE SENSOR                |                     |                      | • ( ) • |             |
| Input Range                    | @25°C               | 0 – 20               |         | psi         |
| Nonlinearity                   | % of full scale     | ±3                   |         | %           |
| Initial Sensitivity            | @25°C               | 256<br>(programmable |         | LSB/psi     |
| Sensitivity Over Temperature   |                     | 80                   |         | ppm/°C      |
| Bias Over Temperature          |                     | 80                   |         | ppm/°C      |
| PRESSURE NOISE PERFORMANCE     |                     |                      |         |             |
| Output Noise                   | @25°C, no averaging | 30                   |         | LSB rms     |
| Noise Density                  | @25°C, no averaging | 3                    |         | LSB/√Hz rms |
| PRESSURE FREQUENCY<br>RESPONSE |                     |                      |         |             |
| Overall Sensor Bandwidth       |                     | 0 to 1000            |         | Hz          |

# TEMPERATURE SENSOR SPECIFICATIONS

Table 2

| Parameter          | Conditions          | Min | Тур                 | Max | Unit    |
|--------------------|---------------------|-----|---------------------|-----|---------|
| TEMPERATURE SENSOR | '()                 |     |                     |     |         |
| Measurement Range  |                     |     | -20 to 108          |     | °C      |
| Sensitivity        | <b>Y</b>            |     | 0.5<br>(calibrated) |     | °C/LSB  |
| Error at 25°C      |                     |     | ±1<br>(calibrated)  |     | °C      |
| Gain Error         |                     |     | ±3                  |     | %       |
| Output Noise       | @25°C, no averaging |     | 5                   |     | LSB rms |

### **ADC SPECIFICATIONS**

Table 3

| Parameter                  | Conditions         | Min | Тур       | Max     | Unit  |
|----------------------------|--------------------|-----|-----------|---------|-------|
| ADC INPUT                  |                    |     |           |         |       |
| Resolution                 |                    |     | 10        |         | Bits  |
| Integral Non-Linearity     |                    |     | ±2        |         | LSB   |
| Differential Non-Linearity |                    |     | ±1        |         | LSB   |
| Offset Error               |                    |     | ±2        |         | LSB   |
| Gain Error                 |                    |     | <b>±2</b> | <b></b> | LSB   |
| Input Range                |                    | 0   |           | 2.5     | Volts |
| Input Capacitance          | During acquisition | * X | 20        |         | pF    |
| CONVERSION RATE            |                    |     |           |         |       |
| Typical Conversion Speed   |                    |     | 1         |         | KS/s  |
| Operating Current          |                    |     | 100       |         | uA    |
| Sleep Mode Current         |                    |     | <1        |         | uA    |
| Turn-On Time               |                    |     | 300       |         | ms    |